

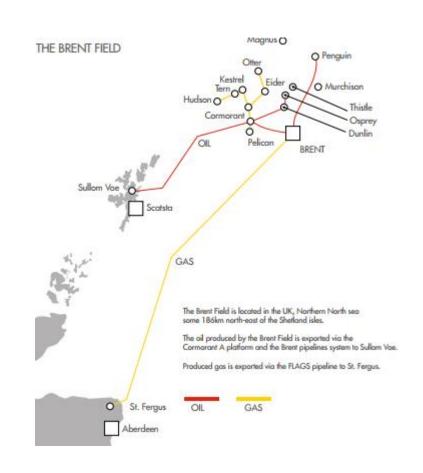
Lessons learned from oil and gas field decommissioning

Quentin Fisher

16th January 2018

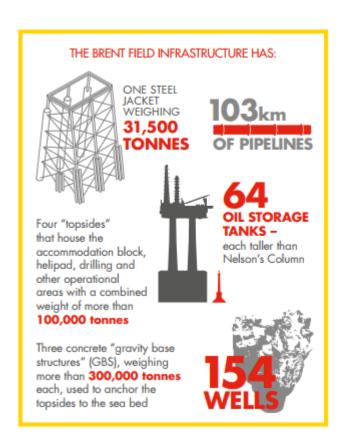
Centre for Integrated Petroleum Engineering and Geoscience (CiPEG)

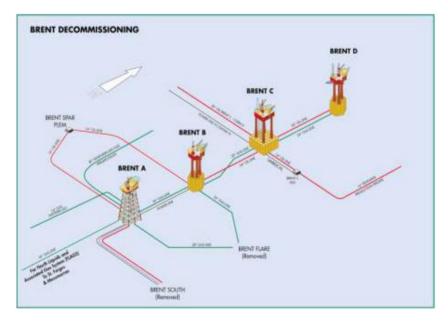
School of Earth and Environment

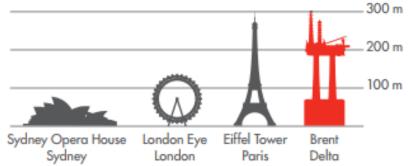

University of Leeds

E-mail: q.fisher@see.leeds.ac.uk

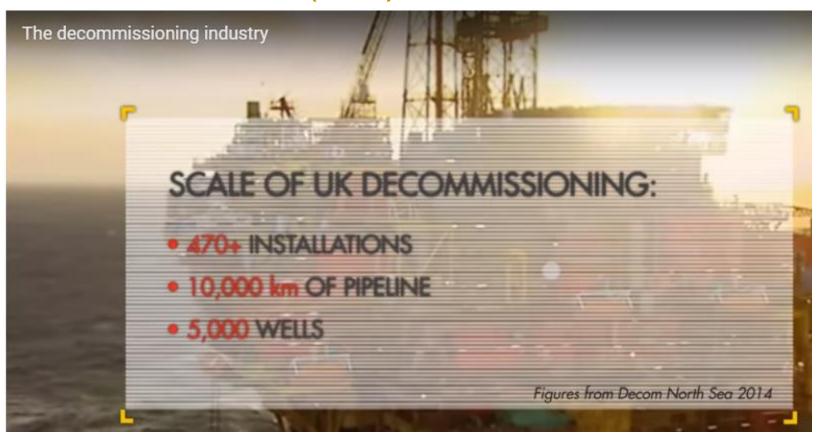
Overview of Brent


- Brent was discovered in 1971
- First production in 1976
- Peak production achieved in 1982 when it supplied enough energy to meet the annual energy needs of half of UK homes
- It has contributed £20 billion in tax to the UK government
- Decommissioning project began in 2006




CIPEG

Size of the task (Brent)

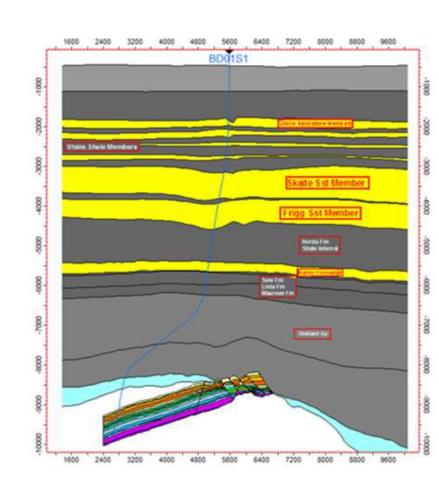


CIPEG

Size of the task (UK)

Key challenges

- The North Sea is a very harsh environment
- Water is deep (140 m)
- 154 wells to plug and abandon
 - Standard practise but expensive
- Gravity based concrete structures have 64 storage tanks
 - Contents of the tanks were unknown and possibly very toxic
 - Difficult to obtain samples as structures need to remain buoyant, they're in deep water and the concrete is 1 m thick
 - Disagreements between stakeholders regarding what to leave in place and what to remove (i.e. remove the whole structure, cut legs above or below sea level)


Key challenges

- Cuttings were often dumped over the side of the platforms
 - Should they be removed?
 - Could it cause more environmental damage than good?
 - What to do with the cuttings if removed?
 - No baseline survey so difficult to assess success
- Topsides are massively heavy (average 25,000 tonnes)
 - Requires the heaviest lifting operation ever performed at sea
- 103 km pipeline that has been buried in trenches
 - Should they be removed?
 - Could it cause more environmental damage than good?

Waste re-injection

- Injection waste from storage tanks into the subsurface was an obvious solution
- Costs greatly increased because:-
 - No longer possible to drill into the reservoir
 - Overburden not sampled or characterized

Shell Decommissioning Process

- Established project team
- Conducted a massive number of technical studies
- Established an independent review committee
- Established large stakeholder group
 - 400 individuals and 180 organizations
- Developed decommissioning plan
- Submit decommissioning plan to government for approval

Criteria used in decisions

All decisions based on 5 criteria

Lessons learned

- Think ahead
- Design the infrastructure with decommissioning in mind
 - Since 1999 this has been a legal requirement
- Assess other potential uses at a very early stage (e.g. CO₂ storage)
- Continually assess the decommissioning process through the life time of the project
 - New concepts/information may impact initial plans
- Start technical studies very early

Lessons learned

- Make necessary measurements when measurements are possible
 - Conduct baseline environmental surveys
 - Characterize and sample overburden while appraising and developing the field
- Predrill wells if they're needed as part of the decommissioning process (e.g. for waste disposal)
- Early stakeholder engagement
- Don't underestimate costs (multiply initial estimates by 3-5?)

Any Questions?