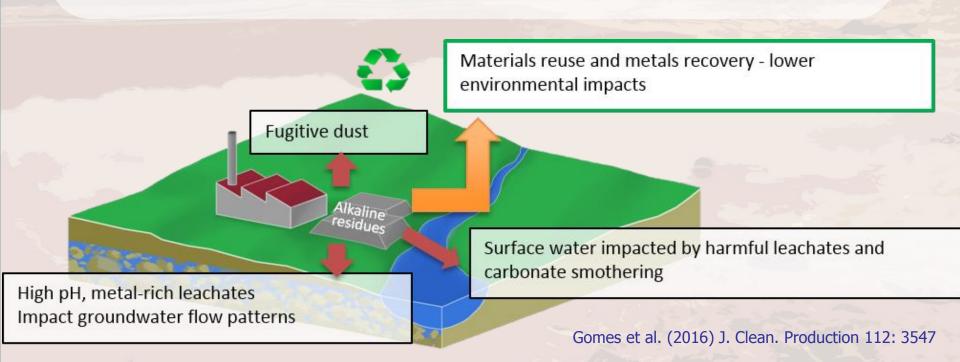
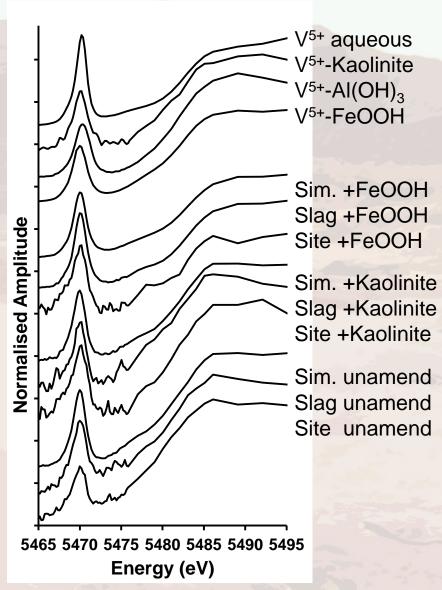


Alkaline wastes / residues

Environmental liabilities



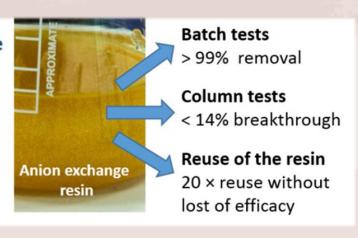
Aims


Improve basis for increasing value recovery from alkaline wastes (metals, carbon, bulk afteruse, land), while managing environmental impacts

Consider challenges to resource recovery: policy, economic, social and technological issues

WP1: leaching mechanisms

- Improve understanding of leaching of V from slag
- Solubility controlled by Cavanadate at source
- V present in pentavalent (most toxic) form
- In environment Fe-oxides important in controlling d/s mobility


WP2: metal recovery and leachate management

- V recovery from both steel slag and bauxite residue leachate successfully demonstrated in batch and column tests
- Highly selective removal
- Buffering mechanisms in flumes
- Feed into WP3

Steel slag leachate

pH 11.5

Vanadium conc. 0.1; 1 and 10 mg L⁻¹

Gomes et al. (2016) Environ. Sci. Pollut. Res. 23: 23034 Gomes et al. (2016) J. Environ. Mgt. in press

WP3: field pilot

- Pilot facility at British Steel, Scunthorpe
- High resolution monitoring of constructed wetlands
- Metal recovery unit for field deployment

WP3: carbon budgets

- Long term (40 yr) atmospheric CO₂ uptake rates quantified
- <1% theoretical uptake based on heap volume and [Ca]</p>
- Next stage: promoting CO₂ ingress

Slag heaps $Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$

Leachate $Ca^{2+} + CO_{2(g)} + 2OH^{-} \rightarrow$ $CaCO_{3(s)} + H_{2}O$

WP4: policy, governance, systems

- >20 interviews with range of stakeholders in UK and EU
 - Governance and policy issues around slag classification, regulation and markets
- Workshop in Redcar at Materials Processing Institute: Options for resource recovery and environmental improvement at former Redcar Steelworks site
 - Over 25 delegates
 - Industry, regulatory, regional development representatives

WP5: Red mud and fly ash development

- Sustainable afteruse at BRDA: with Rusal Alumina
 - Long term metal(loid) cycling to inform risk assessments
 - Cost estimates for different treatments
- Bioleaching of metals from MSW ashes using acidophile bacteria

Bray et al. in prep.

Future funding

- Linked work with CIWM, Accademia Nazionale dei Lincei Italian Royal Society, STFC
- CASE studentship with Rio Tinto Alcan (University of Leeds)
- Proposal on carbon uptake in iron and steel industry (NERC GHG removal theme)
- Mobile lab procurement in process, field testing 2017

RioTinto Alcan

Further details:

www.alkalineremediation.wordpress.com

ALKALINE REMEDIATION

